Las explosiones de rayos gamma de alta energía generalmente ocurren en la lejanía del espacio exterior, tal vez cerca de los agujeros negros o de otros fenómenos cósmicos de alta energía. Así que imagine la sorpresa de los científicos, a mediados de la década de 1990, cuando encontraron estos poderosos destellos de rayos gamma que provenían de nuestra propia Tierra, del cielo justo arriba de nosotros.

{mosimage} Se los llama Destellos de Rayos Gamma Terrestres o DRGT, por su sigla en idioma español (TGF, por su sigla en idioma inglés), y se conoce muy poco sobre ellos. Al parecer, tienen cierta conexión con los relámpagos, pero los Destellos de Rayos Gamma Terrestres en sí son algo totalmente diferente. 

Derecha:
Concepto artístico de los DRGT. Crédito: NASA/Robert Kilgore [Más información

“De hecho”, dice Doug Rowland, del Centro Goddard para Vuelos Espaciales, de la NASA, “antes de los ’90 nadie sabía siquiera que existían. Y, sin embargo, son los aceleradores de partículas más potentes que hay en la Tierra”.

Las partículas individuales de los DRGT adquieren una enorme cantidad de energía, algunas veces el exceso llega a ser de hasta 20 mega electronvoltios (MeV). En contraste, las coloridas auroras boreales que iluminan los cielos de las altas latitudes son producidas por partículas con una energía menor que una milésima de dicha energía. 
 

En este momento, hay más preguntas sobre los DRGT que respuestas. ¿Qué es lo que causa estos destellos de alta energía? ¿Acaso los DRGT ayudan a provocar los relámpagos, o son los relámpagos los que provocan los DRGT? ¿Podrían ser éstos responsables de algunas de las partículas de alta energía en los cinturones de radiación de Van Allen, las cuales pueden causar daños a los satélites? 

Para investigar esto, Rowland y sus colegas en el GSFC, en la Universidad Siena, en la Asociación de Universidades de Investigación Espacial y en el Instituto Hawk de Ciencias del Espacio están planeando enviar, en 2010 o 2011, un pequeño satélite, del tamaño de un balón de fútbol, llamado Firefly (Luciérnaga, en idioma español). Debido a su pequeño tamaño, Firefly costará menos de 1 millón de dólares (cerca de 100 veces más barato de lo que cuestan normalmente las misiones de satélites). Parte del ahorro en su costo se debe a que Firefly será lanzado de acuerdo con lo dispuesto por el programa CubeSat, de la Fundación Nacional de Ciencia (National Science Foundation, en idioma inglés), en virtud del cual se envían pequeños satélites como “polizones” a bordo de cohetes que transportan satélites más grandes hacia el espacio, en lugar de llevar a cabo lanzamientos de cohetes especialmente realizados para ellos.

Izquierda
: Concepto artístico de Firefly en su búsqueda de DRGTs por encima de una tormenta. Firefly realizará mediciones simultáneas de electrones energéticos, de rayos gamma y de las huellas en óptico y de radio de las descargas eléctricas. [Más información

{mosimage}
 Si llega a tener éxito, Firefly enviará de regreso las primeras mediciones simultáneas de DRGTs y relámpagos. La mayoría de lo que se sabe sobre los DRGT hasta la fecha ha sido a través de misiones dedicadas a observar rayos gamma que provienen del espacio profundo, tales como el Observatorio Compton de Rayos Gamma, de la NASA, el cual descubrió los DRGT en 1994. Mientras contemplaba el espacio exterior, Compton alcanzó a vislumbrar rayos gamma con el rabo del ojo, por así decirlo. Los poderosos destellos venían (¡sorpresa!) de la atmósfera de la Tierra. 

Datos posteriores proporcionados por Compton y otros telescopios espaciales han ofrecido un esquema tentadoramente incompleto de cómo ocurren los DRGT:

En el cielo, por encima de alguna tormenta eléctrica, los poderosos campos eléctricos generados por dicha tormenta se extienden hacia arriba por varios kilómetros en la atmósfera superior. Estos campos eléctricos aceleran a los electrones libres, llevándolos a velocidades muy cercanas a la de la luz. Cuando estos electrones ultra rápidos colisionan con las moléculas del aire, se liberan rayos gamma de alta energía y también más electrones, formándose de este modo una cascada de colisiones y tal vez más DRGTs.

{mosimage}Derecha: Doug Rowland, el principal investigador de Firefly, posa junto a un modelo en tamaño real del pequeño satélite. Crédito: NASA/Pat Izzo.

A simple vista, un DRGT probablemente no parecería ser mucho. A diferencia de los rel&aa

(Visited 23 times, 1 visits today)